Semiconductor Memories: an Introduction

Talk Overview

Memory Trend Memory Classification Memory Architectures □ The Memory Core Periphery **Reliability**

Semiconductor Memory Trends (up to the 90's)

Memory Size as a function of time: x 4 every three years

Semiconductor Memory Trends (updated)

Trends in Memory Cell Area

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
DRAM SRAM	FIFO LIFO Shift Register CAM	FLASH MRAM PRAM RRAM	

Memory Timing: Definitions

Memory Architecture: Decoders

Array-Structured Memory Architecture

Hierarchical Memory Architecture

Advantages:

- 1. Shorter wires within blocks
- 2. Block address activates only 1 block => power savings

Block Diagram of 4 Mbit SRAM

Memory Timing: Approaches

Read-Only Memory Cells

MOS NOR ROM

MOS NAND ROM

All word lines high by default with exception of selected row

Equivalent Transient Model for MOS NOR ROM

Model for NOR ROM

□ Word line parasitics

- Wire capacitance and gate capacitance
- Wire resistance (polysilicon)
- □ Bit line parasitics
 - Resistance not dominant (metal)
 - Drain and Gate-Drain capacitance

Equivalent Transient Model for MOS NAND ROM

Model for NAND ROM

- □ Word line parasitics
 - Similar to NOR ROM
- □ Bit line parasitics
 - Resistance of cascaded transistors dominates
 - Drain/Source and complete gate capacitance

Decreasing Word Line Delay

Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

Non-Volatile Memories The Floating-gate transistor (FAMOS)

Device cross-section

Schematic symbol

D

S

Floating-Gate Transistor Programming

Avalanche injection

Removing programming voltage leaves charge trapped Programming results in higher V_T .

A "Programmable-Threshold" Transistor

FLOTOX EEPROM

FLOTOX transistor

Fowler-Nordheim *I-V* characteristic

Absolute threshold control is hard Unprogrammed transistor might be depletion ⇒ 2 transistor cell

Flash EEPROM

Many other options ...

Cross-sections of NVM cells

Flash

Courtesy Intel

Basic Operations in a NOR Flash Memory– Erase

Basic Operations in a NOR Flash Memory— Write

Basic Operations in a NOR Flash Memory— Read

NAND Flash Memory

Courtesy Toshiba

NAND Flash Memory

Courtesy Toshiba

Read-Write Memories (RAM)

□ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell) Fast Differential

DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

$$k_{n,M5} \left((V_{DD} - \Delta V - V_{Tn}) V_{DSATn} - \frac{V_{DSATn}^2}{2} \right) = k_{n,M1} \left((V_{DD} - V_{Tn}) \Delta V - \frac{\Delta V^2}{2} \right)$$
$$\Delta V = \frac{V_{DSATn} + CR(V_{DD} - V_{Tn}) - \sqrt{V_{DSATn}^2 (1 + CR) + CR^2 (V_{DD} - V_{Tn})^2}}{CR}$$
CMOS SRAM Analysis (Read)

CMOS SRAM Analysis (Write)

$$k_{n,M6}\left((V_{DD} - V_{Tn})V_Q - \frac{V_Q^2}{2}\right) = k_{p,M4}\left((V_{DD} - |V_{Tp}|)V_{DSATp} - \frac{V_{DSATp}^2}{2}\right)$$

$$V_{Q} = V_{DD} - V_{Tn} - \sqrt{\left(V_{DD} - V_{Tn}\right)^{2} - 2\frac{\mu_{p}}{\mu_{n}}PR\left(\left(V_{DD} - |V_{Tp}|\right)V_{DSATp} - \frac{V_{DSATp}^{2}}{2}\right)},$$

CMOS SRAM Analysis (Write)

Resistance-load SRAM Cell

Static power dissipation -- Want R $_L$ large Bit lines precharged to V_{DD} to address t_p problem

3-Transistor DRAM Cell

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL} - V_{Tn}

1-Transistor DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

DRAM Cell Observations

□ 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.

□ DRAM memory cells are single ended in contrast to SRAM cells.

The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.

□ Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.

□ When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

Sense Amp Operation

1-T DRAM Cell

Cross-section

Layout

Uses Polysilicon-Diffusion Capacitance Expensive in Area

Advanced 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_{0} = A_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$
$$WL_{511} = \bar{A}_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$

NOR Decoder

$$WL_0 = \overline{A_0 + A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9}$$

$$WL_{511} = \overline{A_0 + \overline{A_1} + \overline{A_2} + \overline{A_3} + \overline{A_4} + \overline{A_5} + \overline{A_6} + \overline{A_7} + \overline{A_8} + \overline{A_9}}$$

Hierarchical Decoders

Multi-stage implementation improves performance

Dynamic Decoders

2-input NOR decoder

2-input NAND decoder

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders Solutions: buffers

progressive sizing

combination of tree and pass transistor approaches

Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sense Amplifier

Directly applicable to SRAMs

Differential Sensing – SRAM

Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQ

Once adequate voltage gap is created, sense amp is enabled with SE Positive feedback quickly forces output to a stable operating point.

Charge-Redistribution Amplifier

Charge-Redistribution Amplifier— **EPROM** V_{DD} SE Load M₄ Out Cascode C_{out} *M*₃ V_{casc} device C_{col} Column M_2 WLC decoder BL C_{BL} **EPROM** M_1 WL array

Single-to-Differential Conversion

How to make a good V_{ref}?

Open bitline architecture with dummy cells

DRAM Read Process with Dummy Cell

Voltage Regulator

Charge Pump

DRAM Timing

Reliability and Yield

• Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

High Density and Large Die size cause Yield Problems

Y = 100 $\frac{Number""of""Good""Chips""on""Wafer}{Number""of""Chips""on""Wafer$

$$\boldsymbol{Y} = \left[\frac{1 - e^{-AD}}{AD}\right]^2$$

Increase Yield using Error Correction and Redundancy

Noise Sources in 1T DRam

Open Bit-line Architecture — Cross Coupling

Folded-Bitline Architecture

Transposed-Bitline Architecture

(a) Straightforward bit-line routing

(b) Transposed bit-line architecture

1 Particle ~ 1 Million Carriers

Yield

Yield curves at different stages of process maturity

Redundancy

Error-Correcting Codes

Example: Hamming Codes

 $P_{1}P_{2}B_{3}P_{4}B_{5}B_{6}B_{7}$ e.g. B3 Wrong with $P_{1} \oplus B_{3} \oplus B_{5} \oplus B_{7} = 0$ 1 $P_{2} \oplus B_{3} \oplus B_{6} \oplus B_{7} = 0$ 1 $P_{4} \oplus B_{5} \oplus B_{6} \oplus B_{7} = 0$ 0

Redundancy and Error Correction

Data Retention in SRAM

SRAM leakage increases with technology scaling

Suppressing Leakage in SRAM

Inserting Extra Resistance

Reducing the supply voltage

Conclusions

- The field of memory design is a dynamic and exciting specialty:
 - Coordinated efforts from marketing and planning, process design, device design, circuit design, test & production engineering, and software engineering are all needed.
 - Many innovative approaches are possible in every design stage.
 - The market competition is fierce, but the winner is awarded with a big prize.
 - The leading memory technologies are being pioneered by domestic companies/engineers.

□ Think flexible and think "big."

Succeed as an engineer.
sElf-Motivated
eNergetic
Self-manaGed
Insightful
iNnovative
Eye on data
Execute
Rewards

